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Radiation Therapy Effects on the Immune System
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Abstract

Recent immunology research led to a drastic increase in the knowledge of antitumour immune 
response mechanisms and in parallel to a rapid development in various antitumour immune 
therapy strategies. This might hopefully result in the implementation of immunotherapeutic 
protocols within the standard anticancer regimens in the very near future. The similarly dynam-
ic progress in the radiobiological knowledge proved that ionizing radiation does not have a gen-
eral immune suppressing effect, as it has been thought for decades, but might possess certain 
immune stimulatory effects, as well. It is also known that local irradiation due to its out-of-field 
effects has systemic immune modulatory capacity, too. In the light of all these novel findings 
the optimal combination between antitumour immunotherapy and radiotherapy has become an 
increasing option. The present review summarizes the main antitumour immunological mecha-
nisms that can be influenced by ionizing radiation.
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INTRODUCTION

Local irradiation of the tumours is one of the most efficient antitumour treatment modalities. 
Radiation-induced tumour cell killing is the primary contributor to the success of radiothera-
pies. Radiation sensitivity of the tumour cells is influenced by many different factors such as 
the intrinsic radiation sensitivity of the tumour cells, the presence and extent of hypoxia within 
tumours and the proliferation capacity of the cells. The tumour microenvironment can also have 
serious effects on the radiation response of the tumours. Immune cells are important contribu-
tors of the tumour micro-environment; they can determine local inflammatory reactions and the 
type and extent of the antitumour immune response. 

Radiation-induced bystander effects might also modify radiation responses both on the local 
and systemic levels. Bystander effects mean radiation-induced reactions in cells which were not 
hit directly by radiation. Although the cellular bystander signals are not well characterized so 
far, it is obvious that some of them (cytokines, chemokines, growth factors, etc.) mediate im-
mune effects (Prise and O’Sullivan, 2009; Lumniczky and Sáfrány, 2015). 

Antitumour immune therapy is perhaps the most dynamically evolving field of tumour treat-
ments. It has dual aims: improving antitumour immune responses and inhibiting those path-
ways which are responsible for the immune suppressive effect of certain tumours. The new 
therapeutic modalities for instance immune therapy should always be combined with existing 
regimes such as radiation- and chemotherapies. Therefore we should understand how normal 
and malignant cells are responding to these combinations. 

Formerly, it seemed obvious that high dose irradiations present immune suppressing effects 
(Cosimi et al., 1973). Recent findings however suggest that there is a dynamic relationship be-
tween radiation- and immune system effects: radiation might enhance certain immune responses 
while other immune pathways are suppressed. 

The aim of the current review is to summarize our recent knowledge on radiation-induced 
immune effects. 

RESULTS

Radiation effects on tumour cells

During oncogenesis different mutations will accumulate in tumour cells and that leads to the 
production of altered polypeptides. These polypeptides might bind on the cell surface to major 
histocompatibility receptor proteins which can lead to the activation of an antitumour immu-
nity. During tumour progression, however the tumour cells can establish several mechanisms 
– increased proliferation capacity, decreased number of MHC molecules, shadowing of cell 
surface antigens, and production of immune suppressive cytokines - to evade immune recogni-
tion and that results in increasing immune suppression. 
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The effect of ionizing radiation on antitumour immunity strongly depends on radiation effects on 
the above mentioned mechanisms. Radiation usually induces mitotic cell death meaning that lethally 
damaged tumour cells might undergo several cell divisions before the eventual death. The most 
frequent forms of late mitotic death are necrosis and senescence. Slowly dying cells are still active 
metabolically and can produce several molecules capable to alter immune system reactions. These 
molecules (cytokines, chemokines, and small molecular weight stress molecules) can exhibit their 
action either locally or after entering the blood stream they might induce systemic immune effects. 
Occasionally, irradiated tumour cells might undergo a rapid cell death, mainly by apoptosis. 

In the context of immunology we can distinguish either immunogenic or tolerogenic cell 
death mechanisms. During immunogenic cell death, molecules capable of activating the anti-
tumour immune response are placed on the tumour cell surface and/or in the extracellular space. 
These molecules usually serve as danger signals which can increase the preparedness of the 
immune system mainly through the activation of dendritic cells (DC). Such danger signals are 
for instance the various heat shock proteins, such as Hsp70 and 90. The appearance of these 
proteins on tumour cell surfaces can improve the maturation of DCs and their capacity to rec-
ognize tumour antigens. They can also help the activation of CD8+ T and natural killer (NK) 
cells (Ma et al., 2010a). The first and perhaps the most important sign of the immunogenic cell 
death is the moving of the calreticulin molecule from the inner to the outer surface of the cells. 
It also causes immunogenic cell death if cellular ATP or DNA-bound HMGB1 (high mobil-
ity group protein B1) enters the extracellular space. HMGB1 can directly stimulate DC cells 
through TLR4 receptors. Free extracellular ATP also acts through DCs (Ma et al., 2011). Dur-
ing tolerogenic cell death dying tumour cells produce molecules which inhibit immune system 
activation. This process can be characterized by the increased level of CD47 protein on the 
surface of tumour cells. CD47, a molecule showing similarity to immunoglobulins, can bind to 
the SIRPα (signal regulatory protein alpha) receptor on the surface of macrophages inhibiting 
their phagocytic activity (Ma et al., 2010b). Increased CD47 level was detected in many types 
of tumours such as ovary, breast, colon, bladder and prostate tumours, hepatocellular carcino-
mas, gliomas as well as myeloid leukaemias (Jaiswal et al., 2009; Willingham et al. 2012). A 
tolerogenic effect was also reported for the CD39 molecule, which is usually present on the 
surface of regulatory T cells, but can appear on the surface of certain tumour cells (pancreatic 
tumours, melanomas), as well (Dzhandzhugazyan et al., 1998; Künzli et al., 2007). CD39 has 
the capacity to inhibit stress activated responses by degrading free ATP. 

Radiation can influence both immunogenic and tolerogenic cell deaths. Radiation-induced 
increased calreticulin levels were detected in murine colon carcinomas, in fibrosarcomas and 
various melanoma derived cell lines (Obeid et al., 2007; Perez et al., 2009). In human papil-
loma virus-positive head- and neck tumours radiation therapy resulted in decreased CD47 cell 
surface expression (Vermeer et al., 2013). Soto-Pantoja et al. (2014) reported that blocking of 
CD47 on tumour cells and their microenvironment increased their radiation sensitivity and 
helped tumour invasion by cytotoxic CD8+ T cells. 

As mentioned before radiation might induce necrotic cell death and senescence in both nor-
mal and tumour cells. Necrotic death of malignant cells is usually an immunogenic death if 
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induced by stress factors. In this case many danger signals and inflammatory cytokines are pro-
duced rapidly which can activate the immune system through DCs (Hatfield et al., 2008; Schil-
dkopf et al., 2011). During senescence the damaged cells lose their replication potential because 
a so called „senescence-activated secretory phenotype” (SASP) will develop and cells will 
produce a number of cytokines and chemokines which induce inflammatory reactions. SASP 
development is stimulated by DNA damaging agents. It is well-known that ionizing radiation 
induces many types of DNA damages and by this manner SASP can be activated by radiation. 
It is however not clear whether SASP is immunogenic or tolerogenic. It seems if SASP is devel-
oping in tumour cells immediately after irradiation, the released inflammatory mediators induce 
immunogenic reactions. However, SASP developing in the microenvironment of tumours can 
initiate and maintain a chronic inflammatory reaction leading to tolerogenic immune suppres-
sive effects (Davalos et al., 2010). These processes have been detected both in pre-cancerous 
and tumour cells (breast and prostate tumours, melanomas and mucosa hyperplasia) (Choi et 
al., 2000; Dhawan et al., 2000; Coppe et al., 2008a; 2008b).

As mentioned above, decreased expression of MHCI receptors on the surface of tumour cells 
is an important mechanism to bypass immune recognition. Thus DC cells that are primarily 
responsible for recognizing cells with altered antigenic structure are unable or less efficient to 
activate the immune system. It was shown in glioma, melanoma and colon carcinoma cell lines 
that ionizing radiation might increase MHCI expression helping antigen presentation (Hauser et 
al., 1993; Santin et al., 1996; Santin et al., 1997). In some cases even a long term effect lasting at 
least up to 11 days was detected (Reits et al., 2006). It is also important that not only single dose 
but fractionated irradiations might increase MHCI levels (Hauser et al., 1993). One of the poten-
tial explanation for the increased MHCI levels is that the interferon gamma (IFN-γ) production 
of tumour infiltrating cytotoxic T and NK cells present in the tumour microenvironment will be 
increased by radiation (Lugade et al., 2008). Reits et al. (2006) found that cytotoxic T cells will 
destroy more efficiently tumour cells with higher MHCI levels.

Beside MHCI receptors ionizing radiation can improve the cell surface concentration of 
other immune response regulating molecules, as well. Such molecules are for instance ICAM-
1 (intercellular adhesion molecule type-1) or CD54 that has substantial role in the leukocyte 
infiltration of tumours. CD54 induction was reported in stomach, ovarium and colorectal tu-
mours (Santin et al., 1996; Santin et al., 1997; Hareyama et al., 1998) after irradiation. It was 
also demonstrated that ionizing radiation can increase the amount of CD95 receptors on the 
surface of different tumour cells. CD95 is an important pro-apoptotic molecule, which induces 
apoptosis in the presence of functional p53 protein. Beside this CD95 can increase the cytotoxic 
effect of tumour infiltrating CD8+ T cells in a p53 independent manner. It was also suggested 
that ionizing radiation not necessarily increased CD95 cell surface levels, but the CD8+ T cell 
activating effect of existing CD95 receptors was improved (Sheard et al., 1999; Abdulkarim  et 
al., 2002; Sheard et al., 2003; Park et al., 2003). 

The NKG2D (Natural Killer Group 2D) receptor plays an important role in antitumour 
immunity. It modulates lymphocyte activation and promotes immunity to eliminate ligand-
expressing cells. NKG2D ligands are produced by a number of cells including tumour cells. 
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NKG2D ligand production is induced by various stress factors including ionizing radiation. Re-
cent data show that DNA damage which can be the result of radiation damages strongly affects 
NKG2D ligand productions, and immune activations (Gasser et al., 2005). Finally, ionizing 
radiation can increase the production of tumour-specific antigens (mucin-1, carcinoembryonic 
antigen) on cell surfaces (Garnett et al., 2004). 

The tumour cells and almost all of the cells in the surrounding tumour microenvironment 
(lymphocytes, monocytes, macrophages, dendritic cells, endothel cells, fibroblasts, etc.) pro-
duce cytokines and chemokines. These molecules depending on their concentrations, on the 
producing and the target cells, might have either immune system activating or inhibiting effects. 
Ionizing radiation can influence these processes by several ways. It was mentioned formerly 
that ionizing radiation increases the IFN-γ production of melanoma cells (Lugade et al., 2008). 
It was also reported that radiation increased IL-1α, IL-6 and GM-CSF production in human lung 
carcinoma cells (Zhang et al., 1994), as well as IL-6 and IL-8 production in gliomas (Yamanaka 
et al., 1993). Yamamoto et al. (2003) compared the cytokine production of oral cavity epithelial 
carcinoma cells and healthy gum keratinocytes before and after radiation therapy. They found 
that the cytokine production (TNFα, TGFβ and GM-CSF) of tumour cells was higher compared 
to normal cells before irradiation. The IL-1β, IL-6, IL-10, TNFα and TGFβ production of tu-
mour infiltrating lymphocytes was higher than the cytokine production of mononuclear cells 
present in peripheral blood. Ionizing radiation altered these profiles: the cytokine production of 
tumour cells decreased, while it was increased in tumour infiltrating lymphocytes. This is a very 
important proof that ionizing radiation can alter the profile and the concentration of cytokines 
capable to influence antitumour immunity. It was found in murine breast carcinoma cells that 
ionizing radiation increased CXCL6 chemokine production in tumour cells and as a result the 
number of tumour infiltrating lymphocytes was enhanced (Matsumura et al., 2008). 

As can be seen above, ionizing radiation - beside improving the production of immune 
system activating cytokines – might also enhance the level of immune suppressing cytokines 
(IL-10, TGFβ and TNFα), contributing to general immune system suppression during tumour 
progression. While IL-10 is a definite immune suppressing agent, meanwhile TGFβ and TNFα 
might have dual effects depending on their level and on the tumour microenvironment. Ion-
izing radiation can strongly enhance TGFβ levels within tumours both by increasing directly 
TGFβ production and by promoting the conversion of the inactive form of TGFβ to an active 
one. This leads to the development and maintenance of a chronic inflammatory state that inhib-
its the function of DC cells and stimulates the conversion of CD4+ T cells to regulatory T cells 
(Barcellos-Hoff et al., 1994). IL-10 can be produced by several types of tumour cells such as 
oral cavity carcinomas (Yamamoto et al., 2003), certain melanomas, gastric carcinoma cells, 
non-small cell lung tumours, as well as by epithelial and basal cell skin carcinomas (Huang et 
al., 1995; Kim et al., 1995; Dummer et al., 1996; Morisaki et al., 1996). Beside tumour cells, 
tumour infiltrating immune cells, mainly monocytes and apoptotic T cells are the main sources 
of IL-10 production within tumours (Gao et al., 1998). Obviously ionizing radiation kills not 
only the tumour cells but induces the apoptosis of tumour infiltrating lymphocytes, contribut-
ing by this manner, too, to the increased production of IL-10. 
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Radiation effects on the immune system

As mentioned above, ionizing radiation can affect the immune system both by direct and indi-
rect ways. The direct influence is through tumour infiltrating lymphocytes, macrophages and 
dendritic cells. It is usually a local effect. The indirect effect is mediated through the so-called 
immune-mediators produced by tumour cells and by healthy cells present in the tumour micro-
environment. This influence might have both local and systemic consequences. 

The radiation sensitivity of the immune system cells is very different. Lymphocytes and es-
pecially B cells and CD8+ cytotoxic T cells are extremely sensitive to radiation and die rapidly. 
Other lymphocyte subsets such as regulatory T cells and NK cells are relatively resistant to 
radiation. Dendritic cells and especially macrophages exhibit much higher radiation resistance 
than lymphocytes (Bogdándi et al., 2010). The varying radiation sensitivity of the cells in the 
tumour microenvironment might substantially modify anti-tumour immunity during radiation 
therapy. In the following subchapters we will summarize our knowledge on the radiation re-
sponse of immune cells. 

Dendritic cells (DC cells)

The dendritic cells are professional antigen presenting cells which can recognize the modified 
antigen structure of malignant cells therefore they are key elements of antitumour immunity. Ma-
lignant tissues contain only a limited amount of DCs and very frequently these DCs represent a 
subgroup which might induce immune suppression after meeting with tumour cell antigens (Som-
broek, 2002; Norian et al., 2009). It was observed that certain tumours (breast, lung, pancreas, 
ovary tumour and melanoma) produce inflammatory mediators and growth factors (TGFβ, vascu-
lar endothelial growth factor or VEGF, cyclooxigenase-2 or COX-2) capable to inhibit the matu-
ration and differentiation of DC cells to maintain an immune suppressive phenotype. It was also 
observed that these DC cells exhibit increased production of indoleamine-2,3-dioxygenase (IDO) 
enzyme, which can catalyse the oxidation of tryptophan which in turn will inhibit the cell division 
of effector T cells and can promote the activation of regulatory T cells (Munn et al., 2002). 

It is obvious that the activation of tumour infiltrating dendritic cells is not sufficient alone to ini-
tiate an efficient anti-tumour immune attack. As mentioned before, large number of danger signals 
is released by dying tumour cells after irradiation. These signal molecules can efficiently activate 
DC cells through TLR4 and P2RX7 receptors. HMG1 – released by dying tumour cells - binds to 
TLR4, while P2RX7 is activated by free ATP (Ma et al., 2010b). TLR4 receptor activation initi-
ates IL-1β production in DC cells, which then induce interferon gamma (IFNγ) production in cy-
totoxic CD8+ T cells. The importance of the functional TLR4 receptors in the development of an 
efficient anti-tumour immune attack is also proved by the finding that those breast tumour patients 
who had function loss resulting mutations in their TLR4 gene had shorter remission intervals after 
treatment than those who had functional TLR4 genes (Apetoh et al., 2007). 

The way how tumour antigens are processed by DC cells and how they are presented to CD4 
+ and CD8 + T cells also determines whether immune stimulation or suppression is initiated. 
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It was observed that radiation improves the capacity of DCs to process antigens and to present 
them to T cells. Interestingly, this effect was reported in several independent studies, but none 
of the studies were able to prove that ionizing radiation increased the presence of activation 
markers on the surface of DC cells. However it was proved that radiation enhanced CD70 levels 
on DC cells which lead to the enhancement of T cell stimulation and increased IFNγ production 
in T cells (Liao et al., 2004; Huang et al., 2011; Burnette et al., 2011).  

Another important step required for DC cells to trigger a tumour-specific immune response 
is to get to the regional lymph nodes and to present tumour antigens there to T lymphocytes. 
This process is helped with the expression of special, so-called „homing” receptors. One of 
these receptors is CCR7, which can recognize two ligands (CCL19 and CCL21). In collabora-
tion these two ligands can activate CCR7 and initiate the transfer of DC cells to regional lymph 
nodes. There are reports that local irradiation can elevate CCR7 levels on DC cells and also the 
concentration of the special ligands in their neighbourhood (Cummings et al., 2012).

Tumour infiltrating macrophages (phagocytes)

Compared to DC cells the infiltration of tumours by macrophages is considerably higher, al-
though obviously there are tumour specific differences: it is around 10-65%. Macrophages are 
usually present at higher number around necrotic regions and at the edges of tumours (Leek et 
al., 1999; Hashimoto et al., 2000). There are two distinct types of macrophages: M1 and M2; 
the former one is considered as an immune-stimulant, the other is an immune suppressor (Lewis 
et al., 2006). It is very important in anti-tumour immunity that which one is the dominant. M1 
macrophages are capable to directly kill tumour cells; they can release immune-activating cy-
tokines and activate antigen-presenting cells. They exhibit their cytotoxic effect either directly 
or through the release of nitrogen-monoxide (NO), or TNFα. TNFα production is helped by 
oxidative free radicals and it is less active in hypoxic regions (Naldini et al., 1994). Since radia-
tion can decrease hypoxia through re-oxygenation and it also induces an oxidative stress, TNFα 
production is probably increased by irradiations. On the other hand nitrogen-monoxide is usu-
ally active in hypoxic regions. The activity of TNFα and nitrogen-monoxide changes with their 
local concentrations. At high concentrations both of them exhibit tumour cell killing, while low 
concentrations help tumour growth by inhibiting apoptosis, stimulating new blood vessel for-
mation and suppressing anti-tumour immunity (Lee et al., 2002; Liao et al., 2007). 

M2 macrophages besides inhibiting T cell immune responses, can promote blood vessel for-
mations in tumours, and can stimulate proliferation and migration of tumour cells, as well. The 
development of M2 phenotype is helped by cytokines and chemokines, such as TGFβ, IL-10 and 
IL-4 produced by tumour cells. Later the M2 phenotype is self-maintained because macrophages 
are also producing TGFβ, IL-10 and IL-4. M2 macrophages can also release arginase that will 
block the immune-stimulating effect of M1 macrophages (Elgert et al., 1998).

As mentioned before macrophages are rather resistant to radiation, therefore they are not usu-
ally killed by radiation therapy. Radiation however can modify their phenotypes. Unfortunately, it 
is not really straightforward whether radiation can help cell differentiation toward the M1 or M2 
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phenotype. Both processes were observed in certain tumour models (Klug et al., 2013). Still, most 
of the publications point toward to the development of M2 phenotype. It was reported in a murine 
prostate cancer model that radiation induced arginase and nitrogen-monoxide production in tu-
mour infiltrating macrophages. Prostate cancer cells exhibited higher proliferation capacity when 
they were co-cultured with these macrophages under in vitro conditions (Tsai et al., 2007). It was 
also shown that radiation resistance of tumours was in line with the extent of their infiltration with 
macrophages. The radiation sensitivity of murine B16 melanomas improved when macrophages 
were selectively removed from the tumour (Meng et al., 2010). Xu et al. reported that tumour 
infiltrating macrophages produced large amounts of colony stimulating factor 1 (CSF-1) both in a 
murine prostate tumour model and also in human prostate carcinoma patients. Improved radiation 
sensitivity was detected when this production was blocked by specific inhibitors (Xu et al., 2013). 

T lymphocytes

The amount of tumour infiltrating lymphocytes might substantially contribute to the develop-
ment of anti-tumour immunity and in the case of certain tumours might serve as an independent 
prognostic factor. However it seems that primarily not the exact number of the tumour infiltrat-
ing lymphocytes are important, rather their subtype will determine the efficiency of the anti-
tumour attack. Usually an increased infiltration with CD8+ lymphocytes leads to a relatively 
good prognosis (Clemente et al., 1996; Curiel et al., 2004; Dahlin et al., 2011). 

The invasion of lymphocytes into tumours is promoted by various soluble molecules (cy-
tokines, chemokines, growth factors) produced by tumour cells and their micro-environment. 
Several publications demonstrated that radiation was influencing the phenotype of tumour infil-
trating lymphocytes, but, just as in the case of macrophages, it was unclear whether this effect was 
beneficial or unfavourable to anti-tumour immunity. In a mouse B16 melanoma model Lugade et 
al. (2005) demonstrated that single dose and fractionated irradiations were able to increase tumour 
cell-specific T cell numbers within the tumour and also improved the migration of lymphocytes 
into the malignant tissues. Yasuda et al. (2011) treated a murine metastatic colorectal tumour by 
local irradiation of the primary tumour and by intra-tumour IL-2 injections and found that both 
the primary tumour and the liver metastases disappeared. Meanwhile, CD4+ effector T cell infil-
tration was strongly enhanced and regulator T cell presence was decreased in the tumours. This 
positive effect was detected only in the combined modality regime. This group has also reported 
that increased tumour infiltration with CD4+ and CD8+ T cells was a good prognostic factor for 
the beneficial response to chemo- and radiotherapies in human rectal tumour patients. In contrast, 
Quinfeng et al. (2013) investigated the infiltration of tumours with CD4+, CD8+ T cells and with 
Foxp3+ regulator T cells in cervix tumour patients before and after radiotherapy and detected that 
while levels of CD4 + and CD8 + T cells decreased, regulatory T cell levels did not change at all. 

These controversial results suggest that the immunological characteristics of different tu-
mour types are largely determined by the tissue microenvironment. The degree of tissue hy-
poxia, the intra-tumour pH, the structure of the tumour, and/or the cytokine milieu within the 
tumour are all contributing factors which fundamentally affect the local and/or systemic effects 
of radiotherapy on anticancer immunity.
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CONCLUSIONS

It has been only very recently discovered that radiotherapy might have the ability to influence 
the immunological parameters of the tumours and the efficacy of immunotherapy in positive 
ways. Nowadays, both basic researchers and oncologists are becoming increasingly aware of 
the potential to combine immune- and radiation therapies. Still, we need significant advances in 
many areas to introduce this combined therapy in the daily routine of cancer treatments. Among 
others, we need better knowledge of the molecular and cellular processes through which radia-
tion can influence anti-tumour immune responses. We should strongly increase the number of 
those clinical trials which investigate the combined effects of immune-, chemo- and radiation 
therapies. Last but not least, systemic predictive markers should be identified which allow the 
optimal tailoring of therapeutic combinations to the individual needs.
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